
Lucid: A Language for
Control in the Data Plane
John Sonchack, Devon Loehr, Jennifer Rexford, David Walker

SIGCOMM '21: Proceedings of the 2021 ACM SIGCOMM 2021
Conference, August 2021

Lucid on GitHub

• This is a very recent paper and active
project.

• Things presented in this paper may not
reflect its current status.

Traditional switch architectures

Data Plane

Control Plane

Match/Action Forwarding Pipeline

Table of authorized flows

LANWAN

Perform Actions
- Add/Delete Flows
- Check table for timeouts
- Update switch tables

PCIe, etc.

Table of authorized flows

Problems

PCIe, etc.

This PCIe link is a bottleneck in packet processing. It introduces latency in

table updates.

We used stateful firewalls as an example, but such problem is prevalent in lots
of applications.

(And up to 9.6Tbps switch fabric!)

PISA Switches

• PISA – Protocol Independent Switch Architecture.

• P4 is a language for programming PISA switches.

PISA Power

• Flexible parsing and manipulation of packets

• Can update persistent states (register arrays)

• …

• We can now implement some control logic directly in the dataplane.

PISA Stateful Firewall

Data Plane

Match/Action Forwarding Pipeline

Table of authorized flows

LANWAN

On LAN packet ingress
- Store the flow in SRAM/TCAM on switch.
On WAN packet ingress
- Check SRAM/TCAM for corresponding flow.

Periodical packet generator to trigger timeout detection.

New Problem

• This programming model is weird!

• Deal with the following concepts on P4:
• Match tables, Actions

• Packet parser

• Register Arrays

• Register Actions

• Packet generator

• Packet replication

• Packet recirculation

• Priority-Based Flow Control queues

New Problem

• As a higher-level language, the primitives and programming model
provided by P4 is tedious to work with.
• Express control logic in the language of packet processing logic, which consists

of disjoint components such as parser, MAU and recirculation.

• Orchestrate other components (such as packet generators) for more
sophisticated controls, such as state management.

• Example: Implementing loops in P4 programs for applications such as
fast rerouter.

Case Study: Fast Rerouter

• Periodically send packets that ping all neighbors.

• Update link statuses.

• Decide which link to go on egress.

Problem 1: Necessary Loops

• P4 is designed that all operations on the dataplane go at line rate, and
operations are expressed in MAU in pipelines.

• No loops: The PISA architecture cannot loop in a single stage.

• However in the fast rerouter, we need a loop that iterates through all
links and send pinging packets.
• Generally, loops are needed for all maintenance tasks.

Problem 1: Necessary Loops

• Solution: Use the recirculation path.

• Design a packet with headers that represent this operation. Include a
counter in the header.

• Recirculate this packet with the recirculation path, ping a neighbor
according to the counter when this packet is met.

• Discard the packet after the counter meets the total number of links.

Problem 2: Scheduling

• We do not want this pinging to happen all the time.

• Use a packet generator to generate the aforementioned packet.

• We want to tell our link to other switches.

• Send the packet to someone else.

Problem 3: Unexposed Constraints

X = RegisterArray<32>(128);
Y = RegisterArray<32>(128);

ingress() {
if(foo) {
tmp = X[0];
Y[0] = tmp;

else {
tmp = Y[0];
X[0] = tmp;

}
}

• This code will not compile to P4.
• P4 programs store persistent state

in RegisterArrays, and use
RegisterActions with arbitrary
blocks of C-like code to operate on
those arrays.

• However, not all RegisterActions
can be actually implemented by
Tofino.

Problem 3: Unexposed Constraints

X = RegisterArray<32>(128);
Y = RegisterArray<32>(128);

ingress() {
if(foo) {
tmp = X[0];
Y[0] = tmp;

else {
tmp = Y[0];
X[0] = tmp;

}
}

• This code will not compile to P4.
• Registers are associated with a

single stage.
• The first condition means X[0] must

appear before Y in the pipeline.
• The second conditions means Y[0]

must appear before X[0] in the
pipeline.

• You’ll get a cryptic message: Table
placement cannot make any more
progress. Does not tell you what’s
actually wrong.

P4 Complexity

• From the discussion we can see that implementing a fast rerouter in
P4 involved a lot of low-level programming.

• In some cases, abstraction is broken: The underlying constraints gets
propagated to the language level, and the developer is forced break
the abstraction and inspect the details.

• Enter Lucid, a high-level abstraction that simplifies this process.

Lucid

• A high-level language that raises the level of abstraction and make
programming easier.

• Designed for Tofino, compiles to P4.

Abstractions

P4

• Match tables
• Actions
• Packet parser
• Register Arrays
• Register Actions
• Packet generator
• Packet replication
• Packet recirculation
• Priority-Based Flow Control

queues

Lucid

• Events

• Handlers

• Arrays

Abstraction: Events

• Events can be both control operations and data packets.
• Also an abstraction of application-layer messages, such as the pings.

• Events can be sent to other switches, or a switch itself.

• Four members: Name, data, time and place.

• Constructs a “multithreading” programming model, since events can
be handled in parallel.

Abstraction: Handlers

• All computation happens in handlers. Specifies what happens when
the switch receives an event.

• Compiles to multiple primitives: Tables, ALUs, stateful ALUs.

• Executes in a single-pass through the pipeline.

Abstraction: Arrays

• Store persistent states.

• Provides a functional interface for operations that can be done with a
single pass of ALU.

• Helps writing modular and reuseable code.

Fast-Rerouter Events & Handler

global pathlens = new Array<<32>>(table_size);

memop incr(int stored, int added) {

return stored+added;

}

fun int get_pathlen(int dst) {

return Array.get(pathlens, dst, incr, x);

} Returns incr(pathlens[dst], x)

Fast-Rerouter Events & Handler

event route_query(int sender_id, int dst);
event route_reply(int sender_it, int dst, int
pathlen);
event check_route(int dst);

Replies to a route query from sender_id
handle route_query(int sender_id, int dst) {
int pathlen = get_pathlen(dst);
event reply = route_reply(SELF, dst, pathlen);
generate Event.locate(reply, sender_id);

}
Schedules a reply event to run on sender_id. Lucid’s way of sending response.
route_reply function on the sender will handle this event and update registers.

Event Generation

• There are two event compositors in Lucid:
• Event.locate() schedules an event on some switch.

• Event.delay() schedules an event to delay until being handled.

• Two combinators can be used together.

• Allows a control operation to be broken into a series of events.

• Allows scheduling events after some time or on other switches.
• Loops can be easily implemented by starting another event at the end of

handler.

• Allows easier implementation of distributed systems.

Event Dispatching

• Local, immediate events:
• The event is “processable.” It is sent into the pipeline, and the match-action

tables are executed.

• Local, non-immediate events:
• The packet stays in a special delay queue at recirculation egress until time is

up.

• The delay queue is paused most of the time, and gets unpaused periodically.

• Remote events:
• The event packet gets sent to a port or a multicast group.

Memops

memop incr(int stored, int added) {
return stored+added;

}
• A special type of function that carries some simple operation to be

completed in one ALU.
• Compiler will throw an error if the operation is too complex.

• Either a simple return statement, or an if statement with a return statement in each
branch.

• Each variable used at most once per expression.
• ALU-supported operators only

• Prevents developers unknowingly writing unimplementable complex
operations.

Ordered Data Access

• Constraint: Persistent data must be
partitioned across the stages of a
feed-forward pipeline. Operations
that happens in later stages cannot
read/modify data in previous stages.

• Lucid treat declarations as high-level
intentions of how the developer want
the data to be placed.

X = RegisterArray<32>(128);
Y = RegisterArray<32>(128);

ingress() {
if(foo) {
tmp = X[0];
Y[0] = tmp;

else {
tmp = Y[0];
X[0] = tmp;

}
}

Ordered Data Access

• A program is well-ordered if all data access follows the declaration
order.

• This is generalizable to any PISA switch, since the constraint is
universal.

• Lucid will throw a source-level error if the order is violated.

Compilation & Optimizations

• Lucid is compiled to P4_16 for Tofino.
• Events map to packet headers.

• Event scheduler is static code (library)

• Handlers are translated to atomic P4 tables, and control flow is optimized.

Handler Compilation

• The handler body is broken into a graph of execution. Each statement
is implementable in a single ALU.

• Three types of tables

Optimizing Control Flow

• Inlining branch operations (1->2)
• Eliminate branch tables by placing the

conditions in non-branch tables.

• Rearranging tables(2->3)

• Merging tables and actions.

Evaluation: LoC

• Estimated 10 ~ 15% of P4 code
length, based on *Flow.

• Shown to the right: Lucid
program lines & generated P4
lines.

• A PhD student new to P4 wrote
a non-trivial Lucid program in
less than an hour.

Evaluation: Optimization effectiveness

• Greater benefit to complex applications.

• High ALU instruction per stage, good parallelism exploitation.

Evaluation: Event Scheduler

• The effectiveness of using pausable queues in the event scheduler.

• Increased buffer utilization and error in timing.

Evaluation: Stateful firewall

• Flow installation time is 300-400x times better.

	Slide 1: Lucid: A Language for Control in the Data Plane
	Slide 2: Lucid on GitHub
	Slide 3: Traditional switch architectures
	Slide 4: Problems
	Slide 5: PISA Switches
	Slide 6: PISA Power
	Slide 7: PISA Stateful Firewall
	Slide 8: New Problem
	Slide 9: New Problem
	Slide 10: Case Study: Fast Rerouter
	Slide 11: Problem 1: Necessary Loops
	Slide 12: Problem 1: Necessary Loops
	Slide 13: Problem 2: Scheduling
	Slide 14: Problem 3: Unexposed Constraints
	Slide 15: Problem 3: Unexposed Constraints
	Slide 16: P4 Complexity
	Slide 17: Lucid
	Slide 18: Abstractions
	Slide 19: Abstraction: Events
	Slide 20: Abstraction: Handlers
	Slide 21: Abstraction: Arrays
	Slide 22: Fast-Rerouter Events & Handler
	Slide 23: Fast-Rerouter Events & Handler
	Slide 24: Event Generation
	Slide 25: Event Dispatching
	Slide 26: Memops
	Slide 27: Ordered Data Access
	Slide 28: Ordered Data Access
	Slide 29: Compilation & Optimizations
	Slide 30: Handler Compilation
	Slide 31: Optimizing Control Flow
	Slide 32: Evaluation: LoC
	Slide 33: Evaluation: Optimization effectiveness
	Slide 34: Evaluation: Event Scheduler
	Slide 35: Evaluation: Stateful firewall

