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Lucid on GitHub

• This is a very recent paper and active 
project. 

• Things presented in this paper may not 
reflect its current status.



Traditional switch architectures

Data Plane

Control Plane

Match/Action Forwarding Pipeline

Table of authorized flows

LANWAN

Perform Actions
- Add/Delete Flows
- Check table for timeouts
- Update switch tables

PCIe, etc.

Table of authorized flows



Problems

PCIe, etc.

This PCIe link is a bottleneck in packet processing. It introduces latency in 

table updates.

We used stateful firewalls as an example, but such problem is prevalent in lots 
of applications.

(And up to 9.6Tbps switch fabric!)



PISA Switches

• PISA – Protocol Independent Switch Architecture.

• P4 is a language for programming PISA switches.



PISA Power

• Flexible parsing and manipulation of packets

• Can update persistent states (register arrays)

• …

• We can now implement some control logic directly in the dataplane.



PISA Stateful Firewall

Data Plane

Match/Action Forwarding Pipeline

Table of authorized flows

LANWAN

On LAN packet ingress
- Store the flow in SRAM/TCAM on switch.
On WAN packet ingress
- Check SRAM/TCAM for corresponding flow.

Periodical packet generator to trigger timeout detection.



New Problem

• This programming model is weird!

• Deal with the following concepts on P4:
• Match tables, Actions

• Packet parser

• Register Arrays

• Register Actions

• Packet generator

• Packet replication

• Packet recirculation

• Priority-Based Flow Control queues



New Problem

• As a higher-level language, the primitives and programming model 
provided by P4 is tedious to work with.
• Express control logic in the language of packet processing logic, which consists 

of disjoint components such as parser, MAU and recirculation.

• Orchestrate other components (such as packet generators) for more 
sophisticated controls, such as state management.

• Example: Implementing loops in P4 programs for applications such as 
fast rerouter.



Case Study: Fast Rerouter

• Periodically send packets that ping all neighbors.

• Update link statuses. 

• Decide which link to go on egress.



Problem 1: Necessary Loops

• P4 is designed that all operations on the dataplane go at line rate, and 
operations are expressed in MAU in pipelines.

• No loops: The PISA architecture cannot loop in a single stage.

• However in the fast rerouter, we need a loop that iterates through all 
links and send pinging packets. 
• Generally, loops are needed for all maintenance tasks.



Problem 1: Necessary Loops

• Solution: Use the recirculation path.

• Design a packet with headers that represent this operation. Include a 
counter in the header.

• Recirculate this packet with the recirculation path, ping a neighbor 
according to the counter when this packet is met.

• Discard the packet after the counter meets the total number of links.



Problem 2: Scheduling

• We do not want this pinging to happen all the time.

• Use a packet generator to generate the aforementioned packet.

• We want to tell our link to other switches.

• Send the packet to someone else.



Problem 3: Unexposed Constraints

X = RegisterArray<32>(128);
Y = RegisterArray<32>(128);

ingress() {
if(foo) {
tmp = X[0];
Y[0] = tmp;

else {
tmp = Y[0];
X[0] = tmp;

}
}

• This code will not compile to P4.
• P4 programs store persistent state 

in RegisterArrays, and use 
RegisterActions with arbitrary 
blocks of C-like code to operate on 
those arrays. 

• However, not all RegisterActions
can be actually implemented by 
Tofino.



Problem 3: Unexposed Constraints

X = RegisterArray<32>(128);
Y = RegisterArray<32>(128);

ingress() {
if(foo) {
tmp = X[0];
Y[0] = tmp;

else {
tmp = Y[0];
X[0] = tmp;

}
}

• This code will not compile to P4.
• Registers are associated with a 

single stage.
• The first condition means X[0] must 

appear before Y in the pipeline.
• The second conditions means Y[0] 

must appear before X[0] in the 
pipeline.

• You’ll get a cryptic message: Table 
placement cannot make any more 
progress. Does not tell you what’s 
actually wrong.



P4 Complexity

• From the discussion we can see that implementing a fast rerouter in 
P4 involved a lot of low-level programming. 

• In some cases, abstraction is broken: The underlying constraints gets 
propagated to the language level, and the developer is forced break 
the abstraction and inspect the details.

• Enter Lucid, a high-level abstraction that simplifies this process.



Lucid

• A high-level language that raises the level of abstraction and make 
programming easier.

• Designed for Tofino, compiles to P4.



Abstractions

P4

• Match tables
• Actions
• Packet parser
• Register Arrays
• Register Actions
• Packet generator
• Packet replication
• Packet recirculation
• Priority-Based Flow Control 

queues

Lucid

• Events

• Handlers

• Arrays



Abstraction: Events

• Events can be both control operations and data packets.
• Also an abstraction of application-layer messages, such as the pings.

• Events can be sent to other switches, or a switch itself.

• Four members: Name, data, time and place.

• Constructs a “multithreading” programming model, since events can 
be handled in parallel. 



Abstraction: Handlers

• All computation happens in handlers. Specifies what happens when 
the switch receives an event. 

• Compiles to multiple primitives: Tables, ALUs, stateful ALUs.

• Executes in a single-pass through the pipeline.



Abstraction: Arrays

• Store persistent states.

• Provides a functional interface for operations that can be done with a 
single pass of ALU.

• Helps writing modular and reuseable code.



Fast-Rerouter Events & Handler

global pathlens = new Array<<32>>(table_size);

memop incr(int stored, int added) {

return stored+added;

}

fun int get_pathlen(int dst) {

return Array.get(pathlens, dst, incr, x);

} Returns incr(pathlens[dst], x)



Fast-Rerouter Events & Handler

event route_query(int sender_id, int dst);
event route_reply(int sender_it, int dst, int
pathlen);
event check_route(int dst);

# Replies to a route query from sender_id
handle route_query(int sender_id, int dst) {
int pathlen = get_pathlen(dst);
event reply = route_reply(SELF, dst, pathlen);
generate Event.locate(reply, sender_id);

}
Schedules a reply event to run on sender_id. Lucid’s way of sending response.
route_reply function on the sender will handle this event and update registers.



Event Generation

• There are two event compositors in Lucid:
• Event.locate() schedules an event on some switch.

• Event.delay() schedules an event to delay until being handled.

• Two combinators can be used together.

• Allows a control operation to be broken into a series of events.

• Allows scheduling events after some time or on other switches.
• Loops can be easily implemented by starting another event at the end of 

handler.

• Allows easier implementation of distributed systems.



Event Dispatching

• Local, immediate events:
• The event is “processable.” It is sent into the pipeline, and the match-action 

tables are executed.

• Local, non-immediate events:
• The packet stays in a special delay queue at recirculation egress until time is 

up.

• The delay queue is paused most of the time, and gets unpaused periodically.

• Remote events: 
• The event packet gets sent to a port or a multicast group.



Memops

memop incr(int stored, int added) {
return stored+added;

}
• A special type of function that carries some simple operation to be 

completed in one ALU.
• Compiler will throw an error if the operation is too complex.

• Either a simple return statement, or an if statement with a return statement in each 
branch.

• Each variable used at most once per expression.
• ALU-supported operators only

• Prevents developers unknowingly  writing unimplementable complex 
operations.



Ordered Data Access

• Constraint: Persistent data must be 
partitioned across the stages of a 
feed-forward pipeline. Operations 
that happens in later stages cannot 
read/modify data in previous stages.

• Lucid treat declarations as high-level 
intentions of how the developer want 
the data to be placed.

X = RegisterArray<32>(128);
Y = RegisterArray<32>(128);

ingress() {
if(foo) {
tmp = X[0];
Y[0] = tmp;

else {
tmp = Y[0];
X[0] = tmp;

}
}



Ordered Data Access

• A program is well-ordered if all data access follows the declaration 
order.

• This is generalizable to any PISA switch, since the constraint is 
universal.

• Lucid will throw a source-level error if the order is violated.



Compilation & Optimizations

• Lucid is compiled to P4_16 for Tofino.
• Events map to packet headers.

• Event scheduler is static code (library)

• Handlers are translated to atomic P4 tables, and control flow is optimized.



Handler Compilation

• The handler body is broken into a graph of execution. Each statement 
is implementable in a single ALU.

• Three types of tables



Optimizing Control Flow

• Inlining branch operations (1->2)
• Eliminate branch tables by placing the 

conditions in non-branch tables.

• Rearranging tables(2->3)

• Merging tables and actions.



Evaluation: LoC

• Estimated 10 ~ 15% of P4 code 
length, based on *Flow.

• Shown to the right: Lucid 
program lines & generated P4 
lines.

• A PhD student new to P4 wrote 
a non-trivial Lucid program in 
less than an hour.



Evaluation: Optimization effectiveness

• Greater benefit to complex applications.

• High ALU instruction per stage, good parallelism exploitation.



Evaluation: Event Scheduler

• The effectiveness of using pausable queues in the event scheduler.

• Increased buffer utilization and error in timing.



Evaluation: Stateful firewall

• Flow installation time is 300-400x times better.
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