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"Traditional switch architectures
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Problems

PCle, etc.

This PCle link is a bottleneck in packet processing. It introduces latency in
table updates.

We used stateful firewalls as an example, but such problem is prevalent in lots
of applications.
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PISA Switches

* PISA — Protocol Independent Switch Architecture.
e P4 is a language for programming PISA switches.

PISA: Protocol Independent Switch Architecture
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PISA Power

* Flexible parsing and manipulation of packets
e Can update persistent states (register arrays)

* We can now implement some control logic directly in the dataplane.



PISA Stateful Firewall

On LAN packet ingress

- Store the flow in SRAM/TCAM on switch.
On WAN packet ingress

- Check SRAM/TCAM for corresponding flow.

Periodical packet generator to trigger timeout detection.
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New Problem

* This programming model is weird!

* Deal with the following concepts on P4:
* Match tables, Actions
* Packet parser
* Register Arrays
* Register Actions
* Packet generator
* Packet replication
* Packet recirculation
* Priority-Based Flow Control queues



New Problem

* As a higher-level language, the primitives and programming model
provided by P4 is tedious to work with.

* Express control logic in the language of packet processing logic, which consists
of disjoint components such as parser, MAU and recirculation.

* Orchestrate other components (such as packet generators) for more
sophisticated controls, such as state management.

* Example: Implementing loops in P4 programs for applications such as
fast rerouter.



Case Study: Fast Rerouter

* Periodically send packets that ping all neighbors.
e Update link statuses.

* Decide which link to go on egress.
routing .

neighbors "/ X neighbors

from
neighbors

from
neighbors

forwarding

egress

Vd
Figure 2: fast rerouter architecture. Circles represent op-

erations, with arrows for (possibly delayed) control flow.
Shaded objects are data structures.



Problem 1: Necessary Loops

* P4 is desighed that all operations on the dataplane go at line rate, and
operations are expressed in MAU in pipelines.

* No loops: The PISA architecture cannot loop in a single stage.

* However in the fast rerouter, we need a loop that iterates through all
links and send pinging packets.

* Generally, loops are needed for all maintenance tasks.



Problem 1: Necessary L.oops

* Solution: Use the recirculation path.

* Design a packet with headers that represent this operation. Include a
counter in the header.

* Recirculate this packet with the recirculation path, ping a neighbor
according to the counter when this packet is met.

* Discard the packet after the counter meets the total number of links.



Problem 2: Scheduling

* We do not want this pinging to happen all the time.
* Use a packet generator to generate the aforementioned packet.

* We want to tell our link to other switches.
* Send the packet to someone else.



Problem 3: Unexposed Constraints

X = RegisterArray<32>(128); * This code will not compile to P4.
Y = RegisterArray<32>(128); * P4 programs store persistent state
N RegistXrArravs, ap‘d ulse
: RegisterActions with arbitrary
1ngfc-e:s() L blocks of C-like code to operate on
if(foo) { those arrays.
tmp = X[O]; » However, not all RegisterActions
Y[O] = tmp; can be actually implemented by
else { Tofino.
tmp = Y[O];
X[0] = tmp;
}



Problem 3: Unexposed Constraints

X = RegisterArray<32>(128); * This code will not compile to P4.
Y = RegisterArray<32>(128); * Registers are associated with a
single stage.
ingress() { * The first condition means XFO] must
if(foo) { appear before Y in the pipeline.
tmp = X[0]; * The second conditions means Y[O]
Y[0] = tmp: must appear before X[0] in the
' pipeline.
else {
tmp = Y[O];
X[0] = tmp: * You'll get a cryptic message: Table
' placement cannot make any more
} progress. Does not tell you what’s

¥ actually wrong.



P4 Complexity

* From the discussion we can see that implementing a fast rerouter in
P4 involved a lot of low-level programming.

* In some cases, abstraction is broken: The underlying constraints gets
propagated to the language level, and the developer is forced break
the abstraction and inspect the details.

* Enter Lucid, a high-level abstraction that simplifies this process.



Lucid

* A high-level language that raises the level of abstraction and make
programming easier.

* Designed for Tofino, compiles to P4.



Abstractions

P4 Lucid
* Match tables * Events
* Actions e Handlers
* Packet parser
* Register Arrays * Arrays

* Register Actions

* Packet generator

* Packet replication

* Packet recirculation

* Priority-Based Flow Control
gueues



Abstraction: Events

* Events can be both control operations and data packets.

* Also an abstraction of application-layer messages, such as the pings.
* Events can be sent to other switches, or a switch itself.

* Four members: Name, data, time and place.

e Constructs a “multithreading” programming model, since events can
be handled in parallel.



Abstraction: Handlers

* All computation happens in handlers. Specifies what happens when
the switch receives an event.

* Compiles to multiple primitives: Tables, ALUs, stateful ALUs.

e Executes in a single-pass through the pipeline.



Abstraction: Arrays

* Store persistent states.

* Provides a functional interface for operations that can be done with a
single pass of ALU.

* Helps writing modular and reuseable code.



Fast-Rerouter Events & Handler

global pathlens = new Array<<32>>(table_size);

memop incr( stored, added) {
return stored+added;

}

fun get_pathlen(int dst) {

return Array.get(pathlens, dst, incr, x);

}



Fast-Rerouter Events & Handler

event route_query( sender_id, dst);
event route_reply( sender_it, dst,
pathlen);

event check_route( dst);

# Replies to a route query from sender_id
handle route_query( sender_id, dst) {
pathlen = get_pathlen(dst);
event reply = route_reply(SELF, dst, |pathlen);
generate £vent.tocate(reply, sender_id);

}



Event Generation

* There are two event compositors in Lucid:
« Event.locate() schedulesan event on some switch.
« Event.delay() schedules an event to delay until being handled.
* Two combinators can be used together.

* Allows a control operation to be broken into a series of events.

* Allows scheduling events after some time or on other switches.

* Loops can be easily implemented by starting another event at the end of
handler.

* Allows easier implementation of distributed systems.



Event Dispatching

* Local, immediate events:
* The event is “processable.” It is sent into the pipeline, and the match-action
tables are executed.
* Local, non-immediate events:
* The packet stays in a special delay queue at recirculation egress until time is
up.
* The delay queue is paused most of the time, and gets unpaused periodically.
* Remote events:
* The event packet gets sent to a port or a multicast group.



Memops

memop incr( stored, added) {
return stored+added;

¥

* A special type of function that carries some simple operation to be
completed in one ALU.

* Compiler will throw an error if the operation is too complex.

. IICE)itherha simple return statement, or an if statement with a return statement in each
ranch.

* Each variable used at most once per expression.
* ALU-supported operators only

* Prevents developers unknowingly writing unimplementable complex
operations.



Ordered Data Access

X = RegisterArray<32>(128); . constraint: Persistent data must be
Y = RegisterArray<32>(128);  ,rtitioned across the stages of a
feed-forward pipeline. Operations
that happens in later stages cannot

ingress() {

1F§1;;01 ){([@] ; read/modify data in previous stages.
Y[0] = tmp; * Lucid treat declarations as high-level

else { intentions of how the developer want
tmp = Y[Ol]; the data to be placed.
X[0] = tmp;

}



Ordered Data Access

* A program is well-ordered if all data access follows the declaration
order.

* This is generalizable to any PISA switch, since the constraint is
universal.

e Lucid will throw a source-level error if the order is violated.



Compilation & Optimizations

* Lucid is compiled to P4 _16 for Tofino.
* Events map to packet headers.
* Event scheduler is static code (library)
* Handlers are translated to atomic P4 tables, and control flow is optimized.



Handler Compilation

* The handler body is broken into a graph of execution. Each statement

is implementable in a single ALU.
* Three types of tables

Lucid idx = idx + NUM_PORTS; Array.setm(tcp_cts, port, plus, 1); if(proto != TCP)
P4 Operation Table Memory Operation Table Branch Table
RegisterAction<...>(t t tm_1 =
eg1§def‘?‘1??v - F,?S;§>S) Se,mf,r<3§> . action if_true(); action if_false();
Vord appytinout M ot r table tbl_if {
. i . . mem = mem + 1;
action do_idx_add {idx = idx + NUM_PORTS;} 3 keys = {proto : ternary;}

table thl_idx_add {
actions = {do_idx_eq;}
nst default_action = {do_idx_eq;}

1
action do_setm_1() { setm_1.execute(port);}
table tbl_setm_1 {
actions = {do_setm_1;}
nst default_action = {do_setm_1;}

}

actions = {if_true; if_false;}
entries = {
(TCP) : if_false;
(L) & if_true;
}
>

Figure 7: Examples from Figure 6 of the three kinds of Atomic P4 tables that the Lucid compiler generates.



Optimizing Control Flow

* Inlining branch operations (1->2)

* Eliminate branch tables by placing the
conditions in non-branch tables.

* Rearranging tables(2->3)
* Merging tables and actions.

idx_eq_0 idx_eq_1
proto| actions proto| actions
UDP | do_noop UDP [do_idx_eq_1

TCP | do_noop | +
* |do_idx_eq 0

merged table 1 *
proto| actions merged table 3
* do_nh_get proto| actions
merged table 2 UDP |do_idx_eq_1 merged table 5
proto| actions TCP | do_noop proto| actions
TCP |do_hcts_fset * |do_idx_eq_0 *  |do_pcts_fset
stage 1 stage 2 stage 3

Figure 8: Merged tables for the program in Figure 6.

Array nexthops = new Array<<32>>(NUM_HOSTS);
Array pcts = new Array<<32>>(NUM_PORTS_X3);
Array hcts = new Array<<32>>(NUM_HOSTS);
memop plus(int cur, int x){return cur + x;}

event count_pkt(int dst, int proto);
handle count_pkt (int dst, int proto) {
int idx = Array.get(nexthops, dst);
if (proto != TCP) {
if (proto == UDP)
idx = idx + NUM_PORTS;
else
idx = idx + NUM_PORTS_X2;
3
Array.set(pcts, idx, plus, 1);
if (proto == TCP)
Array.set(hcts, dst, plus, 1);

(1) Table Control Graph

nexthops_get

(2) Control Graph with

Inlined Conditionals

pproto != TCP &&
proto != UDP
idx_eq O idx_eq_1

proto == UDP

proto != TCP proto == TCP

pcts_fset

“

proto == UDP

proto != UDP

proto == TCP

| idx_eq_0 idx_eq_1 |

|
I
|
I
|
|
|
|
|
|
I
|
|
| hcts_fset

pcts_fset

1(3) Table Dataflow Graph

proto == TCP

hts._fset

proto == TCP proto = TCP &&
Y proto != UDP proto == UDP
hets_fset idx_eq 0 idx_eq_1

<

pcts_fset

]
Figure 6: Top: a Lucid handler using only atomic statements.
Bottom: the handler represented as an atomic table graph (1)
and optimized to require fewer pipeline stages (2 and 3).




LoC Tofino

Application Description Lucid P4 Stages
[ J
E 1 t ° I ‘ Stateful Blocks connections not initiated by trusted 189 2267 10
U a ua lon Py O Firewall hosts. Control events update a Cuckoo
(SFW) hash table.
Fast Forwards packets, identifies failures, and 115 899 8
Rerouter routes. Control events perform fault detec-

(RR) tion and routing.

¢ EStI m ate d 1 O ~ 1 5 % Of P4 COd e Closed-loop  Detects/blocks DNS reflection attack with 215 1874 10
DNS Defense sketches & Bloom filters. Control events age

length, based on *Flow. (ONS)  data structures

*Flow [30] Batches packet tuples by flow to accelerate an- 149 | 1927 | 12

o S h OW n to t h e rig ht . Lu C i d alytics. Control events allocate memory.

Consistent Strongly consistent distributed arrays. Control 94 897 11

p rog ram | i nes & ge nera te d P4 Shared State  events synchronize writes.

(SRO)[35]

Ilnes. Distributed  Distributed Bloom filter firewall. Control 66 1073 10
Prob. Firewall events sync. updates.
(DFW)

o A PhD StUdent new to P4 Wrote +Aging  Adds control events for aging. 119 1595 10

Single-dest.  Routing with the classic Route Information Pro- 81 764 8

a n O n _t riVi a I Lu C i d p rog ra m i n RIP tocol (RIP). Control events distribute routes.

| th h Simple NAT Basic network address translation. Control 41 707 11
eSss dn an our. events buffer packets and install entries.
Historical Measures flows with sketches for historical 93 856 5
Prob. Queries queries. Control events age and export state
(CM) periodically.

Figure 9: Applications with data plane-integrated control,
implemented in Lucid and compiled to the Barefoot Tofino.
The role of control events is bolded.



Evaluation: Optimization effectiveness

* Greater benefit to complex applications.
* High ALU instruction per stage, good parallelism exploitation.
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Figure 12: Optimized stage Figure 13: ALU instrs. per
count vs unoptimized. stage in optimized code.



Evaluation: Event Scheduler

* The effectiveness of using pausable queues in the event scheduler.
* Increased buffer utilization and error in timing.

~ 801 —— Baseline 0.06d ——=======amTTT=—=-
S —=- Delay Queue 5
© 60 - = ,
= o 0.04 1 —— Baseline
“ 40 - 2 —==- Delay Queue
o L
= (]
S 20 - 2 0.02
o
o1 e 0.00 4, : , . .
0 20 40 60 80 0 20 40 60 80
Concurrent Events Concurrent Events

Figure 14: Pausable queue overhead and accuracy.



Evaluation: Stateful firewall

* Flow installation time is 300-400x times better.

1.0
[ ] Remote Control (Baseline)
0.8 1 [ Integrated Control (Lucid)
>
E 0.6 1
8
o 0.4 1
[a
0.2
Opus (line rate) lus 1000us

Flow installation time (log scale)
Figure 17: Stateful firewall flow installation times. 1000 tri-
als using a 2048-element table with a load factor of .3125.
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