Lucid: A Language for
Control in the Data Plane

John Sonchack, Devon Loehr, Jennifer Rexford, David Walker

SIGCOMM '21: Proceedings of the 2021 ACM SIGCOMM 2021
Conference, August 2021

Lucid on GitHub

B PrincetonUniversity / lucid ' Public

* This is a very recent paper and active
<> Code () Issues 3 19 Pullrequests () Actions [Projects [wiki @ Security |~ Insights prOjeCt_

* Things presented in this paper may not
reflect its current status.

Proactively prune constraints to avoid weird bug

Devon Loehr committ

Update readme.md

. jsonch

nits in staticrouter example

. Jjsonch

Update readme.md

.jsonch
Merge branch 'main’' of https://github.com/PrincetonUniversity/lucid i... ==

. jsonch

background color

.jsonch mmitted

Update readme.md

.jsonch r tted

image background color

.jsonch mmitted

"Traditional switch architectures

Perform Actions Table of authorized flows
- Add/Delete Flows

- Check table for timeouts
- Update switch tables

A

Control Plane PCle, etc.

Data Plane

Table of authorized flows

A

<]

LAN

@ :

Y

Match/Action Forwarding Pipeline

WAN

Problems

PCle, etc.

This PCle link is a bottleneck in packet processing. It introduces latency in
table updates.

We used stateful firewalls as an example, but such problem is prevalent in lots
of applications.

Catalyst 9400 10-slot

* 90W UPOE+ on every access port

Bit rate - GT/s Link Bandwidth Lane Bandwidth Total Banwidth x
Gbit/s GB/s 16 lanes GB/s » 384 ports and 480 Gbps per slot
PCle via 2.5 2 0.25 8
PCle v2.0 5 4 05 ' 16 » Secure segmentation with SD-Access
PCle v3.0 8 ' 8 1 32 . o .
T G ’ 8 5 ' a » State-of-the-art high availability with
S 5 ' = A ‘ 198 N+N/N+1 power redundancy

Enhanced Limited Lifetime Warranty (E-LLW)

(And up to 9.6Tbps switch fabric!)

PISA Switches

* PISA — Protocol Independent Switch Architecture.
e P4 is a language for programming PISA switches.

PISA: Protocol Independent Switch Architecture

User Programs ® e - o o .

_ o hisis howyoumuse ntel_Tofino™ 6.5Tb/s, 16nm Eyidence: Tofino 6.5Tb/s switch (arrived Dec 2016)
Multiple Match-Action Units process packets” (Dec’2016)

for header transformation : .
(VLIW Instructions, ALUs,

SRAM+TCAMs, counters, meters, ...)

Packet Header fields to
‘Registers’
(PHV: Packet Header Vector)
/
— - N\
-
5& K u —3
—3 £ L] —
—3 £ 5 —>
—3 E 0 —
—> & & —
=1 —
—3l = : —> The world’s fastest and most programmable switch.
| \& Y, No power, cost, or power penalty compared to fixed-function switches.
Ingress stages (pre-switching) Egress stages (post-switching) An incarnation of PISA (Protocol Independent Switch Architecture)
Any header
anywhere
(inte CHIPS

PISA Power

* Flexible parsing and manipulation of packets
e Can update persistent states (register arrays)

* We can now implement some control logic directly in the dataplane.

PISA Stateful Firewall

On LAN packet ingress

- Store the flow in SRAM/TCAM on switch.
On WAN packet ingress

- Check SRAM/TCAM for corresponding flow.

Periodical packet generator to trigger timeout detection.

X

Data

New Problem

* This programming model is weird!

* Deal with the following concepts on P4:
* Match tables, Actions
* Packet parser
* Register Arrays
* Register Actions
* Packet generator
* Packet replication
* Packet recirculation
* Priority-Based Flow Control queues

New Problem

* As a higher-level language, the primitives and programming model
provided by P4 is tedious to work with.

* Express control logic in the language of packet processing logic, which consists
of disjoint components such as parser, MAU and recirculation.

* Orchestrate other components (such as packet generators) for more
sophisticated controls, such as state management.

* Example: Implementing loops in P4 programs for applications such as
fast rerouter.

Case Study: Fast Rerouter

* Periodically send packets that ping all neighbors.
e Update link statuses.

* Decide which link to go on egress.
routing .

neighbors "/ X neighbors

from
neighbors

from
neighbors

forwarding

egress

Vd
Figure 2: fast rerouter architecture. Circles represent op-

erations, with arrows for (possibly delayed) control flow.
Shaded objects are data structures.

Problem 1: Necessary Loops

* P4 is desighed that all operations on the dataplane go at line rate, and
operations are expressed in MAU in pipelines.

* No loops: The PISA architecture cannot loop in a single stage.

* However in the fast rerouter, we need a loop that iterates through all
links and send pinging packets.

* Generally, loops are needed for all maintenance tasks.

Problem 1: Necessary L.oops

* Solution: Use the recirculation path.

* Design a packet with headers that represent this operation. Include a
counter in the header.

* Recirculate this packet with the recirculation path, ping a neighbor
according to the counter when this packet is met.

* Discard the packet after the counter meets the total number of links.

Problem 2: Scheduling

* We do not want this pinging to happen all the time.
* Use a packet generator to generate the aforementioned packet.

* We want to tell our link to other switches.
* Send the packet to someone else.

Problem 3: Unexposed Constraints

X = RegisterArray<32>(128); * This code will not compile to P4.
Y = RegisterArray<32>(128); * P4 programs store persistent state
N RegistXrArravs, ap‘d ulse
: RegisterActions with arbitrary
1ngfc-e:s() L blocks of C-like code to operate on
if(foo) { those arrays.
tmp = X[O]; » However, not all RegisterActions
Y[O] = tmp; can be actually implemented by
else { Tofino.
tmp = Y[O];
X[0] = tmp;
}

Problem 3: Unexposed Constraints

X = RegisterArray<32>(128); * This code will not compile to P4.
Y = RegisterArray<32>(128); * Registers are associated with a
single stage.
ingress() { * The first condition means XFO] must
if(foo) { appear before Y in the pipeline.
tmp = X[0]; * The second conditions means Y[O]
Y[0] = tmp: must appear before X[0] in the
' pipeline.
else {
tmp = Y[O];
X[0] = tmp: * You'll get a cryptic message: Table
' placement cannot make any more
} progress. Does not tell you what’s

¥ actually wrong.

P4 Complexity

* From the discussion we can see that implementing a fast rerouter in
P4 involved a lot of low-level programming.

* In some cases, abstraction is broken: The underlying constraints gets
propagated to the language level, and the developer is forced break
the abstraction and inspect the details.

* Enter Lucid, a high-level abstraction that simplifies this process.

Lucid

* A high-level language that raises the level of abstraction and make
programming easier.

* Designed for Tofino, compiles to P4.

Abstractions

P4 Lucid
* Match tables * Events
* Actions e Handlers
* Packet parser
* Register Arrays * Arrays

* Register Actions

* Packet generator

* Packet replication

* Packet recirculation

* Priority-Based Flow Control
gueues

Abstraction: Events

* Events can be both control operations and data packets.

* Also an abstraction of application-layer messages, such as the pings.
* Events can be sent to other switches, or a switch itself.

* Four members: Name, data, time and place.

e Constructs a “multithreading” programming model, since events can
be handled in parallel.

Abstraction: Handlers

* All computation happens in handlers. Specifies what happens when
the switch receives an event.

* Compiles to multiple primitives: Tables, ALUs, stateful ALUs.

e Executes in a single-pass through the pipeline.

Abstraction: Arrays

* Store persistent states.

* Provides a functional interface for operations that can be done with a
single pass of ALU.

* Helps writing modular and reuseable code.

Fast-Rerouter Events & Handler

global pathlens = new Array<<32>>(table_size);

memop incr(stored, added) {
return stored+added;

}

fun get_pathlen(int dst) {

return Array.get(pathlens, dst, incr, x);

}

Fast-Rerouter Events & Handler

event route_query(sender_id, dst);
event route_reply(sender_it, dst,
pathlen);

event check_route(dst);

Replies to a route query from sender_id
handle route_query(sender_id, dst) {
pathlen = get_pathlen(dst);
event reply = route_reply(SELF, dst, |pathlen);
generate £vent.tocate(reply, sender_id);

}

Event Generation

* There are two event compositors in Lucid:
« Event.locate() schedulesan event on some switch.
« Event.delay() schedules an event to delay until being handled.
* Two combinators can be used together.

* Allows a control operation to be broken into a series of events.

* Allows scheduling events after some time or on other switches.

* Loops can be easily implemented by starting another event at the end of
handler.

* Allows easier implementation of distributed systems.

Event Dispatching

* Local, immediate events:
* The event is “processable.” It is sent into the pipeline, and the match-action
tables are executed.
* Local, non-immediate events:
* The packet stays in a special delay queue at recirculation egress until time is
up.
* The delay queue is paused most of the time, and gets unpaused periodically.
* Remote events:
* The event packet gets sent to a port or a multicast group.

Memops

memop incr(stored, added) {
return stored+added;

¥

* A special type of function that carries some simple operation to be
completed in one ALU.

* Compiler will throw an error if the operation is too complex.

. IICE)itherha simple return statement, or an if statement with a return statement in each
ranch.

* Each variable used at most once per expression.
* ALU-supported operators only

* Prevents developers unknowingly writing unimplementable complex
operations.

Ordered Data Access

X = RegisterArray<32>(128); . constraint: Persistent data must be
Y = RegisterArray<32>(128); ,rtitioned across the stages of a
feed-forward pipeline. Operations
that happens in later stages cannot

ingress() {

1F§1;;01){([@] ; read/modify data in previous stages.
Y[0] = tmp; * Lucid treat declarations as high-level

else { intentions of how the developer want
tmp = Y[Ol]; the data to be placed.
X[0] = tmp;

}

Ordered Data Access

* A program is well-ordered if all data access follows the declaration
order.

* This is generalizable to any PISA switch, since the constraint is
universal.

e Lucid will throw a source-level error if the order is violated.

Compilation & Optimizations

* Lucid is compiled to P4 _16 for Tofino.
* Events map to packet headers.
* Event scheduler is static code (library)
* Handlers are translated to atomic P4 tables, and control flow is optimized.

Handler Compilation

* The handler body is broken into a graph of execution. Each statement

is implementable in a single ALU.
* Three types of tables

Lucid idx = idx + NUM_PORTS; Array.setm(tcp_cts, port, plus, 1); if(proto != TCP)
P4 Operation Table Memory Operation Table Branch Table
RegisterAction<...>(t t tm_1 =
eg1§def‘?‘1??v - F,?S;§>S) Se,mf,r<3§> . action if_true(); action if_false();
Vord appytinout M ot r table tbl_if {
. i . . mem = mem + 1;
action do_idx_add {idx = idx + NUM_PORTS;} 3 keys = {proto : ternary;}

table thl_idx_add {
actions = {do_idx_eq;}
nst default_action = {do_idx_eq;}

1
action do_setm_1() { setm_1.execute(port);}
table tbl_setm_1 {
actions = {do_setm_1;}
nst default_action = {do_setm_1;}

}

actions = {if_true; if_false;}
entries = {
(TCP) : if_false;
(L) & if_true;
}
>

Figure 7: Examples from Figure 6 of the three kinds of Atomic P4 tables that the Lucid compiler generates.

Optimizing Control Flow

* Inlining branch operations (1->2)

* Eliminate branch tables by placing the
conditions in non-branch tables.

* Rearranging tables(2->3)
* Merging tables and actions.

idx_eq_0 idx_eq_1
proto| actions proto| actions
UDP | do_noop UDP [do_idx_eq_1

TCP | do_noop | +
* |do_idx_eq 0

merged table 1 *
proto| actions merged table 3
* do_nh_get proto| actions
merged table 2 UDP |do_idx_eq_1 merged table 5
proto| actions TCP | do_noop proto| actions
TCP |do_hcts_fset * |do_idx_eq_0 * |do_pcts_fset
stage 1 stage 2 stage 3

Figure 8: Merged tables for the program in Figure 6.

Array nexthops = new Array<<32>>(NUM_HOSTS);
Array pcts = new Array<<32>>(NUM_PORTS_X3);
Array hcts = new Array<<32>>(NUM_HOSTS);
memop plus(int cur, int x){return cur + x;}

event count_pkt(int dst, int proto);
handle count_pkt (int dst, int proto) {
int idx = Array.get(nexthops, dst);
if (proto != TCP) {
if (proto == UDP)
idx = idx + NUM_PORTS;
else
idx = idx + NUM_PORTS_X2;
3
Array.set(pcts, idx, plus, 1);
if (proto == TCP)
Array.set(hcts, dst, plus, 1);

(1) Table Control Graph

nexthops_get

(2) Control Graph with

Inlined Conditionals

pproto != TCP &&
proto != UDP
idx_eq O idx_eq_1

proto == UDP

proto != TCP proto == TCP

pcts_fset

“

proto == UDP

proto != UDP

proto == TCP

| idx_eq_0 idx_eq_1 |

|
I
|
I
|
|
|
|
|
|
I
|
|
| hcts_fset

pcts_fset

1(3) Table Dataflow Graph

proto == TCP

hts._fset

proto == TCP proto = TCP &&
Y proto != UDP proto == UDP
hets_fset idx_eq 0 idx_eq_1

<

pcts_fset

]
Figure 6: Top: a Lucid handler using only atomic statements.
Bottom: the handler represented as an atomic table graph (1)
and optimized to require fewer pipeline stages (2 and 3).

LoC Tofino

Application Description Lucid P4 Stages
[J
E 1 t ° I ‘ Stateful Blocks connections not initiated by trusted 189 2267 10
U a ua lon Py O Firewall hosts. Control events update a Cuckoo
(SFW) hash table.
Fast Forwards packets, identifies failures, and 115 899 8
Rerouter routes. Control events perform fault detec-

(RR) tion and routing.

¢ EStI m ate d 1 O ~ 1 5 % Of P4 COd e Closed-loop Detects/blocks DNS reflection attack with 215 1874 10
DNS Defense sketches & Bloom filters. Control events age

length, based on *Flow. (ONS) data structures

*Flow [30] Batches packet tuples by flow to accelerate an- 149 | 1927 | 12

o S h OW n to t h e rig ht . Lu C i d alytics. Control events allocate memory.

Consistent Strongly consistent distributed arrays. Control 94 897 11

p rog ram | i nes & ge nera te d P4 Shared State events synchronize writes.

(SRO)[35]

Ilnes. Distributed Distributed Bloom filter firewall. Control 66 1073 10
Prob. Firewall events sync. updates.
(DFW)

o A PhD StUdent new to P4 Wrote +Aging Adds control events for aging. 119 1595 10

Single-dest. Routing with the classic Route Information Pro- 81 764 8

a n O n _t riVi a I Lu C i d p rog ra m i n RIP tocol (RIP). Control events distribute routes.

| th h Simple NAT Basic network address translation. Control 41 707 11
eSss dn an our. events buffer packets and install entries.
Historical Measures flows with sketches for historical 93 856 5
Prob. Queries queries. Control events age and export state
(CM) periodically.

Figure 9: Applications with data plane-integrated control,
implemented in Lucid and compiled to the Barefoot Tofino.
The role of control events is bolded.

Evaluation: Optimization effectiveness

* Greater benefit to complex applications.
* High ALU instruction per stage, good parallelism exploitation.

o S
5 4 =
1] mlO'
o N
w o
2 = -
g s °
) @
0-7 °-0|_
a =20 x =3 3=V L =20x=7FG 3=V
< T o 8 Z < X o T 4
Z*8565° Y2268 ZC565° 935260
w ¥ L ¥
0 0
application application

Figure 12: Optimized stage Figure 13: ALU instrs. per
count vs unoptimized. stage in optimized code.

Evaluation: Event Scheduler

* The effectiveness of using pausable queues in the event scheduler.
* Increased buffer utilization and error in timing.

~ 801 —— Baseline 0.06d ——=======amTTT=—=-
S —=- Delay Queue 5
© 60 - = ,
= o 0.04 1 —— Baseline
“ 40 - 2 —==- Delay Queue
o L
= (]
S 20 - 2 0.02
o
o1 e 0.00 4, : , . .
0 20 40 60 80 0 20 40 60 80
Concurrent Events Concurrent Events

Figure 14: Pausable queue overhead and accuracy.

Evaluation: Stateful firewall

* Flow installation time is 300-400x times better.

1.0
[] Remote Control (Baseline)
0.8 1 [Integrated Control (Lucid)
>
E 0.6 1
8
o 0.4 1
[a
0.2
Opus (line rate) lus 1000us

Flow installation time (log scale)
Figure 17: Stateful firewall flow installation times. 1000 tri-
als using a 2048-element table with a load factor of .3125.

	Slide 1: Lucid: A Language for Control in the Data Plane
	Slide 2: Lucid on GitHub
	Slide 3: Traditional switch architectures
	Slide 4: Problems
	Slide 5: PISA Switches
	Slide 6: PISA Power
	Slide 7: PISA Stateful Firewall
	Slide 8: New Problem
	Slide 9: New Problem
	Slide 10: Case Study: Fast Rerouter
	Slide 11: Problem 1: Necessary Loops
	Slide 12: Problem 1: Necessary Loops
	Slide 13: Problem 2: Scheduling
	Slide 14: Problem 3: Unexposed Constraints
	Slide 15: Problem 3: Unexposed Constraints
	Slide 16: P4 Complexity
	Slide 17: Lucid
	Slide 18: Abstractions
	Slide 19: Abstraction: Events
	Slide 20: Abstraction: Handlers
	Slide 21: Abstraction: Arrays
	Slide 22: Fast-Rerouter Events & Handler
	Slide 23: Fast-Rerouter Events & Handler
	Slide 24: Event Generation
	Slide 25: Event Dispatching
	Slide 26: Memops
	Slide 27: Ordered Data Access
	Slide 28: Ordered Data Access
	Slide 29: Compilation & Optimizations
	Slide 30: Handler Compilation
	Slide 31: Optimizing Control Flow
	Slide 32: Evaluation: LoC
	Slide 33: Evaluation: Optimization effectiveness
	Slide 34: Evaluation: Event Scheduler
	Slide 35: Evaluation: Stateful firewall

