
Rowhammer:
A Retrospective

Onur Mutlu, Jeremie S. Kim

Background: DRAM Cells

Figure taken from Y. Kim et al., "Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors," ISCA 2014

Figure taken from Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019.
ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs. MICRO '52

“For example, in an x86 machine with a single DIMM, each row contains 1,048,576 cells that can store 128 kB of data.”

Background: DRAM Cells
• The PRECHARGE command applies to a whole

bank. It first closes the currently opened row
by zeroing all word-lines in the target bank,
and subsequently drives all bit-lines to Vdd/2
as an initial value.

• The ACTIVATE command targets a specific
row. The word-line of the addressed row is
raised high, which connects the cells of that
row directly to the bit-lines. Charge sharing
then occurs between the storage cell and the
bit-line.

• The READ/WRITE commands apply to four or
eight consecutive columns according to the
burst mode. Based on the starting column
address, the corresponding columns of data in
the global row buffer are read out to or
written from the I/O pins.

Figure taken from Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019.
ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs. MICRO '52

Figure taken from Bahar Talukder, Bashir Mohammad Sabquat & Ray, Biswajit
& Forte, Domenic & Rahman, Md Tauhidur. (2019). PreLatPUF: Exploiting
DRAM Latency Variations for Generating Robust Device Signatures. IEEE Access

Motivation

• Bit cells in DRAMs are getting smaller; frequencies are getting faster
• Each cell has lower capacitance, more prone to leakage.
• Cells got closer to each other due to the high density.
• Higher frequency means more reads/write can get executed during each

refresh period.

• Rowhammer exploits the analog volatility of DRAM.

Presenter Notes
Presentation Notes
Therefore this structure looks exceptionally weak from analog perspective.

Method
In the original ISCA 2014 Paper, the authors
found that repeatedly accessing adjacent
rows of the victim row can occasionally cause
the bit to flip.

Original paper used FPGA to directly hammer
the DRAM modules. Follow-up works use
CPU commands instead.

Presenter Notes
Presentation Notes
Not much theory, straightforward approach.
Just jump to evaluation.

RowHammer – Evaluation

• For all evaluations, unless otherwise stated:
• Activation Interval = 55ns / access (open-read-close cycle), maximum allowed
• Refresh Interval = 64ms refresh time, default value in DDR3 standard.
• 2.33 × 106 op/s

RowHammer – Error Rate

1Gb/Chip

2Gb/Chip

Presenter Notes
Presentation Notes
So they tested a lot of modules from three different companies, manufactured at different times.

Low error rate at older processes. High error rate at the beginning of a new process, then gradually falls down.

RowHammer – Effect on refresh time

Presenter Notes
Presentation Notes
Naturally, lower the refresh time brings lower error rate.

RowHammer – Activation Interval

RowHammer – Activation per RI

RowHammer – Affected rows

Presenter Notes
Presentation Notes
Difference more likely to be odd numbers. Potentially due to Gray coding.

RowHammer – Victim Cells

• Spatial location of victim cells do not show any pattern, locality or
skew.

• Some cells may end up near each other, by chance.
• Can cause multi-bit levels, making the error uncorrectable by ECC.

• Errors are Mostly Repeatable
• Number of errors vary ±0.25% from the average value.
• Over 70% cells are constant offenders. i.e. They are prone to RH attacks.

• Weak Cells (Cells with low retention times) has nothing to do with RH
vulnerability.

• Not related to temperature.

Causes

• Proposed causes of RowHammer
• Electromagnetic coupling: Changing the voltage of a wordline could inject

noise into an adjacent wordline.
• Bridge (DRAM manufacturing fault): Accelerate the flow of charge between

two bridged cells.
• Hot-carrier injection: Permanently damage the wordline by hot-carrier

injection. Modify the amount of charge in cells or alter its characteristic.

Exploting RowHammer

• RowHammer errors violate two invariants that memory should
provide:

• 1) a read access should not modify data at any address
• 2) a write access should modify data only at the address that it is supposed to

write to.

• Thus, modifying memory by RowHammer breaches memory isolation
and circumvents every memory protection mechanism.

• RowHammer-induced errors are predictably repeatable.

Exploting RowHammer

• Case Study #1: Flip Feng Shui
• Attack one VM from another VM.

Virtualization Host

Victim VM Attacker VM

Flip Feng Shui

• Hypervisors provide the illusion
of full isolation:

• Isolated Hardware Environment.
• Isolated Software Environment.
• Isolated data

Virtualization Host

Victim VM Attacker
VM

Physical Memory

Flip Feng Shui

• Memory deduplication is
frequently used to reduce
resource consumption.

• Deduplication: Pages with the
same content are mapped to the
same physical page.

• Copy-On-Write: The deduplicated
page will be copied and separated
if some VM wrote to it.

Virtualization Host

Victim VM Attacker
VM

Physical Memory

Flip Feng Shui

• What happens if Attacker VM
writes to shared page?

• Copy-On-Write: The content will
be copied and relinked. No
Attack!

Virtualization Host

Victim VM Attacker
VM

Physical Memory

Flip Feng Shui

• What happens if Attacker VM
hammers a shared page?

• Attack is possible! Breaks Copy-
On-Write.

Virtualization Host

Victim VM Attacker
VM

Physical Memory

Flip Feng Shui

• Memory templating: identifying physical memory locations in which
an attacker can induce a bit flip using a given hardware vulnerability.

• Memory massaging: steering targeted sensitive data towards the
vulnerable physical memory locations.

• Exploitation: triggering the hardware vulnerability to corrupt the
intended data for exploitation.

Flip Feng Shui – Memory Templating

• Finding available “templates” for flipping bits.
• When using RowHammer, equivalent to finding bits that are prone to RH.

Flip Feng Shui – Memory Massaging

• The attacker need to know the victim’s data.
• For example, a public key held by the attacker.

• The attacker keeps the same data in its own virtual memory space at
a RH-prone address, wait for deduplication to scan and merge.

• To guarantee the row stays in the address allocated by the attacker, the
attacker VM need to be started before the victim VM.

• Hammer the row.

Flip Feng Shui – Exploitation

• Flip a bit in RSA public key to make it factorizable

• Flip a bit in APT repository to feed malicious packages.

Flip Feng Shui – SSH Evaluation

Presenter Notes
Presentation Notes
Figure 8 shows the probability of factorizing the key within an hour with the given amount of templates.

Case Study #2 – Google Project Zero

• Published on GPZ blog, NOT PEER REVIEWED, NO ARTIFACT

• NaCl sandbox escape
• Native Client is a sandboxing system that only allows running a subset of

x86/64 instructions.
• Developed by Google. Deprecated. Destaffed. Replaced with WebAssembly.

• Kernel privilege escalation

Case Study #2 – NaCl sandbox escape

• Native Client
• NaCl distributed as LLVM IR, then compiled in web browser.
• Sets up x86 segments to restrict the memory range that the sandboxed code

can access.
• A code verifier to prevent use of unsafe instructions such as those that

perform system calls.
• Requires all jumps to be indirect jumps to 32-byte aligned address
• Instruction must not cross the 32-byte address boundary

• NaCl assumes that the hardware behaves correctly. It assumes that
memory locations don’t change without being written to!

Case Study #2 – NaCl sandbox escape

• A bit flip in validated code can turn a safe instruction sequence into
an unsafe one.

• jmp *%rax -> jmp *%rcx. The address in RCX in unchecked.
• 48 b8 0f 05 eb 0c f4 f4 f4 f4

• Modifying the OPCODE is also possible.movabs $0xf4f4f4f40ceb050f,%raxsyscall
jmp 0x10
hlt
hlt
hlt
hlt

Case Study #2 – NaCl sandbox escape

• Fills the sandbox’s dynamic code area with 250MB of NaClized
indirect jump instruction sequences using NaCl’s dyncode_create()
API.

• In a loop:
• Row-hammers the dynamic code area using CLFLUSH, picking random pairs of

addresses.
• Searches the dynamic code area for bit flips. If it sees an exploitable bit flip, it

uses it to jump to shell code hidden inside NaCl-validated instructions.
Otherwise, if the bit flip isn’t exploitable, it continues.

• Mitigation: Disallow CLFLUSH in NaCl code.

Case Study #2 – Kernel Privilege Escalation

• Use RH to induce a bit flip in a page table entry (PTE) that
causes the PTE to point to a physical page containing a page
table of the attacking process.

• So the attacker process can write its own page table!
• And can therefore access the entire physical memory

Case Study #2 – Kernel Privilege Escalation

• Find locations where a bit flip is useful.
• Bit 51 in a 64-bit word is the top bit of the physical page number in

a PTE on x86-64. Not useful.
• Bit 12 is the bottom bit of the PTE's physical page number. Useful.

• Spray most of physical memory with page tables. When a PTE's
physical page number changes, there's a high probability that it will
point to a page table for our process.

• Repeatedly mmap()files to memory.

Case Study #2 – Kernel Privilege Escalation

• Create a file in /dev/shm for mapping. Write a marker at the start
of each 4K page so we can identify these pages.

• mmap()a large block of memory.
• Search this block for aggressor/victim addresses. Record the useful

victim pages.
• munmap()all but the aggressor and victim pages and begin the

exploit attempt.

Case Study #2 – Kernel Privilege Escalation

• First, deliberately fragment physical memory.
• Allocate a large portion of available physical memory.
• Deallocate a page whenever we will cause the kernel to allocate a page.

• mmap()the data file repeatedly at 2MB-aligned virtual address.
• Cause the kernel to populate some of the PTEs by accessing their corresponding pages.

Only one PTE per table needed since we know where the vulnerable rows are.
• In the middle of this, we munmap()the victim page. With a high probability, the kernel

will reuse this physical page as a page table.
• We cannot read this page anymore, but we can RH it.
• We won’t be able to observe the bit flip directly.

• Scan the mapped memory region, see if any region no longer maps to the marked file we
created.

• Check if the region contains a page table, a PTE.
• Check which virtual address this PTE is referring to by writing and scanning.

Exploting RowHammer – What has been hacked?

• Escape from the x86-64 sandbox environment – Google Project Zero
• Exploiting the DRAM rowhammer bug to gain kernel privileges –

Google Project Zero
• Takeover of a victim VM by another attacker VM running on the same

system
• Compromises OpenSSH by modifying the public keys in a victim VM
• Flips APT Ubuntu Archive Signing Keys to something more easily hackable

Presenter Notes
Presentation Notes
kernel privileges – hammer the page table entry (PTE)
VM – deduplication & CoW
Drammer -

Exploting RowHammer – What else has been hacked?

• Drammer - mobile device user-space program
• Force a victim process to allocate its PTE in a RowHammer-vulnerable region of

memory
• Remote takeover of a server via JavaScript code execution
• Takeover a mobile system by triggering RowHammer using the WebGL

interface on a mobile GPU
• Takeover a remote system by triggering RowHammer through RDMA
•

• Researchers and practitioners will develop different types of attacks to
exploit RowHammer in various contexts and in many more creative ways.

Utilizing RowHammer (Again)

• PUF (Physical Unclonable Function)
• The location of RowHammer-prone cells are fixed!
• Generate bit flips in the region whose locations are unique to the device and

can be used to identify the device
• But - Hammering on rows surrounding the region reserved by the

RowHammer-based PUF causes the rows at the edges of the reserved DRAM
region to have an increased number of bit flips.

RowHammer in Broader Context

• The emergence of RowHammer is not surprising at all.
• Fundamental problem: cell-to-cell interference
• All memory technologies exhibited such disturbance problems

• SRAM, FLASH and hard disk drives
• PCM, STT-MRAM and ReRAM

• This problem will accompany us into the future.

Responses to RowHammer

• Apple increased memory refresh rates
• Memtest86 included a RowHammer test
• A lot of other research and patents developed solutions to

RowHammer

Defending RowHammer

• We need both immediate and long-term solutions to the
RowHammer problem

• Immediate: Utilize things that are already present in current systems.
• Long-term: Revise hardware.

Defending RowHammer - Immediate

• Increase DRAM refresh rate in the memory controller
• Apple, HP, Cisco, Lenovo, and IBM.
• “Might be” practical and effective in reducing the vulnerability
• Increased energy/power consumption, reduced system performance.
• Total elimination as tested requires 7.8× increase in the refresh rate.

• ANVIL: Software-based detection of RowHammer attacks
• Detect RowHammer with hardware counters

• Intelligently allocating and physically isolating pages
• So RowHammer cannot hit anything important

• Prevented DMA-based attacks by isolating DMA buffers with additional buffer rows
• Analyze code, identify code segments that are probably RowHammer attacks and

prevents them prior to execution
• ZebRAM – Identify odd rows as safe and even rows as unsafe

Defending RowHammer - Authors

• Making better DRAM chips that are not vulnerable
• Using (strong) ECCs to correct RowHammer-induced errors
• Increasing the refresh rate for all of memory.
• Statically remapping/retiring RowHammer-prone cells via a one-time

post-manufacturing analysis
• Dynamically remapping/retiring RowHammer-prone cells during

system operation
• Accurately identifying hammered rows during runtime and refreshing

their neighbors

Defending RowHammer - PARA

• Probabilistic Adjacent Row Activation
• Every time a row is opened and closed, one of its adjacent rows is also

opened (refreshed) with some low probability
• Stateless : No expensive hardware data structures required
• Performance and power consumption overheads are very low due to the

infrequent activation (probability of refresh : 0.001 to 0.005)

• Need better cooperation between DRAM chip and memory controller
due to remapping.

Defending RowHammer – Long-term

• A small stack for maintaining access history information and decide to
refresh

• Counter-based defences

Presenter Notes
Presentation Notes
Other long-term solutions other than PARA.

Circuit-Level Studies

• RowHammer effect is governed by the charge pumping process.
• Root cause: Charge recombination of the victim cell with electrons from the

current channels between neighboring cells and their corresponding bitlines.
• Feature size aggravates the RowHammer effect
• Gamma Rays increase susceptibility to RowHammer

• Low data retention time is not related to RowHammer susceptibility
• Temperature annealing can “repair” retention-weak cells, but not

RowHammer-prone cells
• Hydrogen annealing can improve DRAM reliability against crosstalk,

mitigate RowHammer attacks.

Current status

• RowHammer failure is still observed in state-of-the art DRAM devices.
• DDR4
• ECC DRAM
• LPDDR3
• LPDDR2

• DDR5 introduced RFM (Refresh Management)
• MC will issue a refresh to a bank periodically, based on the ACTs it received.
• RFM enables the separation of the tasks for RH-protection to both MC and DRAM by

having the former generate an RFM command at a specific activation frequency and the
latter take proper RH-protection measures within a given time window.
(M. J. Kim et al., "Mithril: Cooperative Row Hammer Protection on Commodity DRAM
Leveraging Managed Refresh,“ HPCA 2022)

• No literature of successful RowHammer attack on DDR5 modules

Future Concerns

• Data Retention Failures
• DRAM Retention Failures

• New failure patterns, such as variable retention time caused by trap-assisted
gate-induced drain leakage, complicates things.

• NAND flash data retention issues
• Other vulnerabilities to NAND Flash Memory

• Cell-to-cell interference; variation.
• Exploit vulnerabilities in flash memory programming operations on existing

SSDs to cause malicious data corruption.

Analog/Mixed Signal Information Flow Tracking

VeriCoq-Analog

• Analog designs are commonly handcrafted at the transistor level.
• Solutions

• Perform IFT at the transistor level
• Extract high-level analog modules (e.g. amplifiers, mixers, etc.) from the transistor

level design and perform IFT at the analog module level.
• Considerations

• In analog circuits, information may be carried not only through voltage but also
through current.

• Analog circuits involve transistors in various configurations.
• The voltage on the bulk terminal of a transistor may also be manipulated to leak

information to the source or drain terminals.
• Other components, such as capacitors, resistors, etc. should also be considered for

information flow.

VeriCoq-Analog Model

• MOSFETs:
• Any sensitive value on the gate is transferred to the drain and the source.
• Any sensitive value on the bulk is transferred to the drain and the source.
• Any sensitive value on the source is transferred to the drain and vice versa.

• BJTs:
• Any sensitive value on the base is transferred to the emitter and the collector.
• Any sensitive value on the emitter is transferred to the collector and vice versa

• Capacitors, inductors and resistors: Transparent
• Diodes: Also transparent, since voltage at both terminal can change

current.

• … Then, create Verilog models for these devices.

VeriCoq-Analog Model

• High-sensitivity signals are
expressed as a “1”.
Nonsensitive values are
expressed as a “0”.

VeriCoq-Analog Model

• High false-positive rate, as it basically models “Everything is
connected to everything else.”

• Requires the developer to accurately mark components as sensitivity
reducers, or no path.

	Rowhammer:�A Retrospective
	Background: DRAM Cells
	Background: DRAM Cells
	Motivation
	Method
	RowHammer – Evaluation
	RowHammer – Error Rate
	RowHammer – Effect on refresh time
	RowHammer – Activation Interval
	RowHammer – Activation per RI
	RowHammer – Affected rows
	RowHammer – Victim Cells
	Causes
	Exploting RowHammer
	Exploting RowHammer
	Flip Feng Shui
	Flip Feng Shui
	Flip Feng Shui
	Flip Feng Shui
	Flip Feng Shui
	Flip Feng Shui – Memory Templating	
	Flip Feng Shui – Memory Massaging
	Flip Feng Shui – Exploitation
	Flip Feng Shui – SSH Evaluation
	Case Study #2 – Google Project Zero
	Case Study #2 – NaCl sandbox escape
	Case Study #2 – NaCl sandbox escape
	Case Study #2 – NaCl sandbox escape
	Case Study #2 – Kernel Privilege Escalation
	Case Study #2 – Kernel Privilege Escalation
	Case Study #2 – Kernel Privilege Escalation
	Case Study #2 – Kernel Privilege Escalation
	Exploting RowHammer – What has been hacked?
	Exploting RowHammer – What else has been hacked?
	Utilizing RowHammer (Again)
	RowHammer in Broader Context
	Responses to RowHammer
	Defending RowHammer
	Defending RowHammer - Immediate
	Defending RowHammer - Authors
	Defending RowHammer - PARA
	Defending RowHammer – Long-term
	Circuit-Level Studies
	Current status
	Future Concerns
	Analog/Mixed Signal Information Flow Tracking
	VeriCoq-Analog
	VeriCoq-Analog Model
	VeriCoq-Analog Model
	VeriCoq-Analog Model

